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SOME PROBLEMS INVOLVED IN THE NUMERICAL SOLUTIONS OF TIDAL HYDRAULICS
EQUATIONS
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ABSTRACT

The linearized two-dimensional hydrodynamic equations are presented in a manner which displays the principal

assumptions involved.

Several approximations are developed for the partial derivatives, and boundary conditions

in finite difference form and the associated errors are discussed. The procedure for establishing a finite difference
analog of the equations of motion and boundary conditions is illustrated, and computational stability for the solution
of some simple problems is illustrated by means of examples.

The physical and computational problems associated with the introduction of friction in the computational

model are discussed.
sidered in others.

1. INTRODUCTION

Tidal hydraulics is concerned with flow and the effects
of flow in shallow basins in which the flow is generally
dominated by long-period gravity waves, such as the
tides, generated in an adjacent sea or ocean. Interest is
generally centered in the vertical motion of the free
surface and the horizontal currents. Sometimes it is
necessary to recognize a two-layered structure resulting
from salt water intrusion or a thermocline. Sometimes
it is sufficient to consider only one space dimension. The
horizontal boundaries of the basin may be very irregular
and may vary with time, but their existence is an essential
part of the problem. Energy may enter the basin through
the open portion of the boundary in the form of wave
motion, or through the free surface as wind stress. Energy
is presumed to be dissipated through bottom friction.

The equations which govern all tidal hydraulic flows
are too complex to permit a ready solution in any but the
most simple problem. Therefore, most investigations are
conducted with the aid of models in which one attempts
to include only those phenomena which he believes to be
most significant to the investigation. These models may
be analogous, such as the familiar hydraulic models and
the mechanical tide-predicting machine; they may require
the digital or analytic solution of a set of differential
equations, or the statistical analysis of observations. For
maximum effectiveness, all models, physical and statistical
as well as dynamic, should be based on a mathematical
analysis of the physical problem. However, useful results
can be obtained from both hydraulic and statistical
models, even though this process is not fully developed.
* The application of digital calculation on an electronic
computer to the statistical analysis of storm surge genera-
tion has been discussed by Harris [7], Harris and Angelo

It is concluded that friction should be neglected in many problems but that it must be con-

[9], and Pore [19]. A similar application of digital calcu-
lations to the analysis and prediction of tides is given by
Harris, Pore, and Cummings [10].

This paper is concerned primarily with the application
of digital calculations to the solution of the hydrodynamic
equations in two horizontal dimensions. The mathema-
tical background will be discussed from the point of view
of showing both the weaknesses and strengths of digital
calculations as compared to other methods of solving
similar problems. No attempt is made at a rigorous
development of the ideas presented if these can be found
in a reasonably available reference. Examples of the
calculations made by several of the computational models
for very simple basins are presented.

2. THE HYDRODYNAMIC EQUATIONS

Since interest is centered in the horizontal flow and
the motion of the free surface, it is natural that the
principal simplification should take the form of a vertical
integration of the primitive equations. This process can
be carried out with various degrees of rigor. Many
writers have derived the equations of motion and con-
tinuity directly in integrated form, but this procedure
does not show the approximations involved nearly so
clearly as the derivation based on the integration of the
primitive equations. The techniques of this integration
have been shown by Haurwitz [11], Welander [24], Fortak
[4], and Platzman [18). Nearly all of the other derivations
can be obtained as special cases of that given by Fortak.

The two-dimensional hydrodynamic equations may be
stated in either of two equivalent forms. Until the in-
troduction of digital computations with these equations,
the form based on the mean current velocities was generally
preferred. Since then the use of the volume transport
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vector has gained popularity. The reason for this will
be given in a later section. A form of the volume trans-
pori equations which contains most of the terms used by
any worker in this field and a few error terms that must
be discarded to obtain a solution are given below. This
form would be valid if (1) the fluid were homogeneous; (2)

_ the pressure were given by the hydrostatic equation; and
(3) there were no surface waves. (Surface waves, not
recognized in this model, will produce significant effects
on sea level in some regions (Harris [8]).)
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u, v, components of horizontal motion

w' =u—U[(D+h)

v =o—V/(D+h)

p=density of water

pe=atmospheric pressure

@, @7, components of surface stress; ®r_p,, Wr_ 5 com-
ponents of bottom stress

D=depth of undisturbed fluid

h=disturbance in the height of free surface

g=acceleration of gravity

f=Coriolis parameter

Since the atmospheric pressure and the surface stresses
are not significantly affected by the water motions being
considered in this paper, it must be assumed that they
will be supplied from other sources. Consideration of the
frictional dissipation terms will be deferred to the end of
the paper, partly from lack of knowledge of the proper
friction law, and partly to avoid certain complications
that may arise in the discussion of computational stability
if friction is introduced too early. The integrals in
equations (1) and (2) are also neglected for lack of infor-
mation required to compute them.
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The boundary condition natural to the problem is no
flow across a closed boundary.
The principal features of tidal hydraulics computatlons
can be better displayed in a linearized version of equations
(1)—(3). We may return to the initial set of equations for
correction terms as needed or to determine the nature of
the errors resulting from neglected terms. The linearized
equations may be given in the form:

DU

& +g D fV+KU/D— o %’“’”/” @

°V+ D—+fU+KV/D_ bt %%’%mr,./p (5)
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3. FINITE DIFFERENCE EQUATIONS

To obtain a digital solution of the above equations it is
necessary to approximate the differential quotients by
finite differences at discrete points in time and space.
Suitable approximations can be derived from Taylor
Series expansions of the functions as illustrated below:

F(x+Az) may be written as

aFr (x) L dF(x)
l d 2
(FT(JL)

F(w—i—Ax) F(x)+ (Az)?/2!

(Az)/3!+ . (7

- If only the first two terms of this series are considered, one

obtains
dF(x)  Flz+Az)— F(x)
where the error, ¢, is given by
2
el:(l F(z) Az )

> 2

Equation (8) is called a two-point forward difference.
A better approximation for many purposes can be obtained

by considering a second Taylor expansion, I(z—Ax)
which may be written as

2
Flo—Ax) = Fz) — (lT(x)A +(l F(m) (az)Y2!

$F(x

— dx(a) (Az)¥/8!4+ ... (10)

Subtraction of (10) from (7) gives
dF(x) F(x—{—Az) —Flx— A.c) (11)

dx 2Ax
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where the error, ¢, is given by

_d*F(x) (Ax)?
T T Tl

(12)

Equation (11) is called a central difference form. Other
approximations to the differential quotients can be con-
structed as needed by extensions of this principle. A
three-point forward difference that will be needed later is

Zf 21 [—3F(z)+4F (24 Ar)— Flz+282) +;
daf(x) (Ax)®
e (13)

The dependence of /7 on both z and ¥ can be considered
by means of a Taylor expansion of the function in two
dimensions. One such expansion which will be needed
later is given by

oF(x,y) 1
oz  (4a-+2b)As
+F(z+Ax, y—Ay) —Fz—az, y—Ay)}

Az=Ay=As

la{ F(z+Az, y+Ay) — Flz— Az, y+Ar)

(14)

Equation (14) can be written in a more compact form as

—a 0 a
OF (x,y) 1 —b 0  b|F(z,v)

or  (40+2b)As (15)

—a 0 @

This form has been derived in a somewhat different
manner by Shuman [23] who sets a=1, =2, and calls
this a “filter factor form”. The redson for this name will
be given later. It should be noted that if a=0 and b=1,
equation (15) reduces to (11). Lauwerier [13] used a
form of (15) in which a=1, 5=0, and showed that this
has several desirable properties not possessed by (11).

Equation (11) is the most widely used approximation
for dF/oxz in the digital solution of problems whose
solutions are expected to be some type of wave. It is
frequently unacceptable for the time derivative in dealing
with diffusion problems; however, tidal hydraulics is
mainly concerned with waves, and it appears that satis-
factory solutions tor many problems can be based on
equation (11). By combining equation (11) with equa-
tions (4)—(6) and ignoring the bottom stress, the following
equations are obtained.

At

i =Uns — gD g 5 (W =B g 288 V4907 ]
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Here the notation F7.; means F(iAz, jAy, mAt). The

pressure gradient term has been combined with the sur-
face stress term to obtain a simpler equation because
both of these terms must be supplied and the pressure
tern is not the source of any computational difficulties.
The density has been absorbed into the symbol 7 in
order to simplify the notation in the remainder of the
paper. This does not call for any numerical changes as
the constant density may be taken as one unit, but in
dimensional checks it must be remembered that 7 is
stress per unit mass.

An examination of equations (16)—(18) shows that the
caleulations of U and V for even time steps can be effected
by using h values for only odd time steps and vice versa.
Calculation of U and V at points 1, 7, in this manner does
not require a knowledgs of h at the same points. Like-
wise the calculation of h at 2, j does not require any knowl-
edge of U or V at 4, 5. In short, this computational grid
consists of several interlocking sub-grids such that the
calculation of A on one grid requires a knowledge of U, V'
one time step removed on a different grid. This feature
has been discussed extensively by Platzman [17], [18],
Many workers take advantage of
this fact to reduce the machine time required for a com-
putation. Others prefer to compute on all available
interlocking grids, and to compare the semi-independent
solutions to obtain a measure of the error involved in the
calculations. 1n this study, the field values are computed
on each and every grid point including the boundaries
for every time interval. The calculations are staggered
neither in time nor space.

4, COMPUTATIONAL STABILITY

Any finite difference expression for differential quotients
generally involves both round-off and truncation errors,
since the calculations can be carried out only to a finite
number of decimal places, and because the approximation
for the derivative is based on an incomplete description
of the functions. It can be shown that the time depend-
ence of the error is approximated by functions of the type

e=A(z,y)e= =1 (19)
If A and o are both different from zero, the error will
grow with -time until it ultimately exceeds the true solu-
tion, and the computation is said to be unstable. No
method has been found for insuring that A(z,y)=0
Theorems have been developed for insuring that « will
vanish in certain cases. These theorems generally impose
a limiting value for Af in the form

A<M (20)

where M is a linear function of As and may depend on
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other parameters of the problem. The form of equation

(20) depends on the particular finite difference prediction

equations employed, and may be altered if any term is
changed, or if any new terms are added.

It is rarely possible to establish the requirements for
computational stability for geophysical hydrodynamic
problems in any rigorous maaner.
a guide in the construction of finite difference systems
which may be sufficiently stable for practical problems
but the final proof of stability must come from test cal-
culations. One of the principal symptoms of computa-
tional instability is a growth or decay of energy in the
system, which does not result from those terms of the
cquations which should add or subtract energy. Thus
an effective test for instability can be constructed by

introducing a disturbance into the numerical model and "

monitoring the total energy of the solution through several
oscillations of the primary mode when both forcing terms
and dissipating terms are omitted from the equations.

Since computational instability usually takes the form
of an unreasonable growth of energy in the system, it was
initially thought that the instability found in the solution
of practical problems resulted from using too low a value
for the frictional dissipation, and efforts were made to
control this instability by the introduction of larger fric-
tion coefficients for the additional dissipation terms.

One of the first thorough examinations of the computa-
tional stability of a tidal hydraulics problem was pub-
lished by Fischer [3]. He used forward time differences
for the transport terms U and V, and backward time
differences for the height. Central differences were used
for all space derivatives. His stability analysis indicated
that

At K/Df?, f#0, and At < Az/+/gDj2 (21)

with the notation used in this paper. See Appendix 5.

Thus very short time intervals have to be used with

this system if the water is very deep, and calculations
near the equator would be impossible.

The form of equations (9) and (12) shows that the

truncation error is highest in the higher-order harmonics
of the basin. A little reflection will show that this is also
true of the round-off error. Thus one may expect to
reduce instability by introducing some process which will
remove all traces of the highest harmonic and will damp
the other high harmonics. This process is called “filter-
ing” or ‘“smoothing.” It is especially important and
especially difficult to treat properly when non-linear
terms of the equations are being considered because of
the tendency of non-linear terms to divert energy from
the principal harmonics to those with both higher and
lower wave numbers. Unfortunately, most filters which
remove the unwanted higher harmonics of the system also
change the energy content of other harmonics as well, and
great care must be required in constructing filters which
remove the difficult-to-treat high harmonics  without
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seriously affecting the phenomena being studied. Exten-
sive discussions of the construction of numerical filtering
functions have been given by Shuman [22] and Holloway
[12].

It can be shown by methods discussed by Shuman and
Holloway, that the numerical filter,

F(a) =1 [F(e— a2) +2F(a)+ Fla-+ )]

will eliminate the harmonic with a wavelength of 2Azx,
which is found to be the most troublesome, without intro-
ducing a phase shift or changing the mean value of F(z)
over any extended range. KExtending the above filter
to two dimensions as in Appendix 4 justifies setting
a=1, b=2 in equation (15) and calling the resulting
central difference form the “filter factor form.” With
these values of a and b, the filter factor form eliminates
wavelengths of 2Ax in either the z or 7 directions. Several
other types of smoothing can be used to improve the
computational stability. The selection of the best method
for a particular problem requires an understanding of the
physical processes which are important to the problem.
Some subjective judgment based in part on the solution
of identical problems with two or more different values of
Az and At, is nearly always necessary.

5. FACTORS FAVORING THE TRANSPORT FORM OF
THE INTEGRATED EQUATIONS

Continuity considerations require that the total trans-
port through a channel of variable cross section must be a
reasonably smooth function of distance. Thus the mean
speed increases in restricted passages and decreases in
more open regions. Since the mean speed varies more
with position than the total transport, the higher har-
monics in a Fourier expansion of the speed have larger
amplitudes than the corresponding harmonics in a Fourier
expansion of the total transport field. The increased
importance of the higher harmonics causes greater dis-
tortion of the true solution by smoothing or filtering
operators when mean velocity terms are used instead of
the transport terms. Neither of these deficiencies in the
mean velocity equations exists when analytic solutions of
the equations are obtained. Thus they result only from
the application of finite difference methods.

6. FINITE DIFFERENCE REPRESENTATION OF THE
BOUNDARY CONDITIONS

Much of the present understanding of the computa-
tional stability and the use of smoothing functions in tidal
hydraulics problems stems from the extensive studies of
numerical weather prediction. The basic equations of
numerical weather prediction and tidal hydraulics are
very similar; the principal differences are the greater
importance of the non-linear terms in the meteorological
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problem and the greater importance of variable coefficients
in the tidal hydraulics problem.*

However, the situation with respect to boundary con-
ditions is vastly different. There are no natural bound-
aries in most meteorological problems. Consequently,
the meteorologist chooses artificial boundaries in regions
distant from that of major interest so that the probability
of boundary error penetration into the region of major
interest is at a minimum. However, the meteorologist
has the advantage of many observations at many levels
throughout his region of interest every day. These ob-
servations provide realistic initial values at frequent
intervals and partially offset the necessity of working with
rather poorly stated boundary conditions.

In tidal hydraulics and oceanography, on the other
hand, the boundaries are often well defined. Most of the
information which can be used in evaluating models comes
from the boundary, and observations from the interior of
the fluid which could be used to provide initial conditions

* Uscful first approximations to the solution of many meteorological problems can be
obtained with models which eliminate gravity waves, but retain the effects of the earth’s
rotation. The gravity waves arc essential to the tidal hydraulics problem, but a first
approximation may often be obtained without consideration of the rotation of the earth.
There are some problems in both ficlds in which the conditions are the reverse of those
stated ahove, and many problems in both fields in which both gravity and rotation are
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are very rare. Consequently the need for accurate state-
ments of the boundary conditions is much greater than in
meteorology. The simplest statement of the boundary
conditions is obtained for a closed rectangular region of
dimensions L. W; in this case the boundary conditions

become

4 (0)=u(L)=0
2(0)=v(W)=0

A solution which is consistent with the true boundary
conditions and the central difference formulation of the
problem can be obtained from the calculation illustrated
in figure 1a. Values supplied or computed for odd time
intervals are shown above the computation point; values
computed for even time intervals are shown below the
line. If the Coriolis term must be included, a somewhat
less satisfactory procedure results, illustrated in the same
manner in figure 1b. Here the boundary must be thought
of as moving a distance of As between time steps and the
entire procedure must be considered as a gross approxima-
tion. Real basins rarely have straight line boundaries,
but if As is small relative to the basin, the true boundary
can be approximated by a short section of a zigzag

important. Thus this is not considered to be a fundamental difference between the two . .
fields. boundary constructed on the above principle. Calcula-
Boundary conditions
u=0 ot X=0, and Xx=L
V=0 ot y=0, and y=W
V=0 V=0 V=0 V=0 V=0 V=0
u=0 U u u=0 u=0 u u u=o0
h h h h V=0 h v=0 h
\ A\ A\ A h \ h \%
u=0 u=0
u=0 u u u=0 u=0 u u u=0
h h h h v h h
v v Y \Y h v h Y
- u=0 u u=0
u=0 u u u=0 u=0 u u u=0
h h h v=0 V=0
V=0 V=0 V=0 V=0 v=0 V=0
a Vertical letters (u) are odd times b

Slant letters («) are even times

FIGURE 1.—Schematic illustration of a simple representation of the computation scheme and boundary condition in the digital solution of
the hydrodynamic equations for a rectangular basin: (a) without rotation, (b) with rotation.
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tions made with this type of boundary show that the main
features of the flow can be reproduced with reasonable
accuracy (Hansen [5], [6]; Welander [24]). Nevertheless,
the many fictitious corner points introduced by this zigzag
boundary are source points for small-scale disturbances.
not germane to the problem, and the details of the solu-
tion obtained with this system are of questionable value.
The system does not provide values of & at the coast where
they are most needed and where most of the verification
data are to be found.

An alternate system of approximating the true boundary
without the use of false corner points has been developed
by Platzman [18]. He requires that the flow be parallel
to the generalized coast at the coastline, and applies the
continuity equation for a calculation of the mean height
in each computation square of length As which is crossed
by the coastline.

A form of the boundary conditions which gives A at the
coast and which we believe to be new is given below. This
form presupposes that transport and height terms are
calculated at each point of the grid system. If there is
no transport across the line z=0, equation (4) reduces to
the form

gD Ly 24)

If D is constant, combining equations (24) and (13) gives

2As

It
hé's gDy, 5

=3 (25)

[4h,—hg— 255 Vs, +9m |
If D vanishes at the coast, equation (24) for 0A/dz is in-
determinate. This possibility can be avoided by intro-

ducing the identity
Doh/dz=0(Dh)/ox—hdD/dx (26}

When this expression is combined with (24) and (13) one
obtains

2
ahp,Dy —hs 1D2,j—~j—8 Ve 4@,
b, 5= D, ,—Ds, (27)

The term, D, ; does not appear in this expression, so the
solution does not become indeterminate when D, ; van-
ishes at the shore. However, it reduces to (25) when D
is constant. The acceptability of this expression when
Dy, ;=0 at the coast has not been tested but it will be
shown below that this form does lead to an improvement
in the calculations for some cases of variable but non-
vanishing depths at the shore. Expressions for the
boundary conditions on the other boundaries can be
developed in a similar manner.

1t is very convenient when obtaining quantitative
analytic solutions and when discussing most of the prob-
lems associated with numerical solutions to consider only
rectangular regions. However, this also presents problems
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concerning the proper expressions for the variables at the
corner points which are common to both boundaries.
The ideal solution should deal with actual, e.g., curvilinear
boundaries, and the problem of corner points should
ultimately vanish. Hence this is not considered a funda-
mental problem; however at the present stage of develop-
ment it is essential that corner points be considered in a
manner which will minimize errors. Methods for doing
this are presented in Appendix 3.

7. POTENTIAL ADVANTAGES OF DIGITAL
SOLUTIONS

In spite of the difficulties cited above, the digital method
of solving the tidal hydraulics problem offers certain
advantages that cannot be obtained by other means.
The most obvious advantage is that the finite difference
formulation of the problem permits a much better approxi-
mation to the actual wind stress and atmospheric pressure
fields than can be obtained in any fluid model.

A second potential advantage of digital solutions in
this field is that once satisfactory numerical representa-
tions have been developed for a given class of phenomena
new basins can be constructed or old ones altered by the
preparation of a few punch cards. The effects of hori-
zontal and vertical gradients of density and of the rotation
of the earth can be added with much greater accuracy
and less cost than in hydraulic models.

8. TESTS OF SOME DIGITAL COMPUTATIONS
SCHEMES

Because digital solutions to the hydrodynamic equa-
tions have the potential ability of permitting the calcula-
tion of the effects of wind stresses and pressure gradients
on the water level at the coast of an ocean or a large lake,
we believe that it is necessary to exploit this technique
in the study of storm surges. We also believe that the
technique, when fully developed, should be very useful
in engineering design studies. The development and
testing of such computational models suffer from several
difficulties not mentioned above. Chief among these is
that surge observations obtained at the shore during
storms contain an unknown increment due to the effects
of surface waves. This contribution is developed in a
strip less than one mile wide paralleling the coast (Dorre-
stein [1]; Fairchild [2]; Longuet-Higgins and Stewart
[14], [15]; Saville [21]). It is not governed by equations
(4)-(6) but it does appear in all of the water level obser-
vations. Next in importance are the uncertainties con-
cerning the wind stress field. Although a solution of the
equations for the wind-driven currents can provide much
useful information, the computational model cannot be
adequately evaluated by a direct comparison of observed
and computed water levels.

A series of computational models has been developed
to test the acceptability of the various finite difference
expressions discussed above. The stability of each model
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has been tested by introducing an applied force of the
type

Wr,=0 for all ¢
@7, —=0 t<0
@r,=A[1—cos w ] 0<t< 27 /w
@y = 2wt

Equilibrium conditions are assumed to prevail at t=0.

The total energy (kinetic+potential) of the basin is
computed for each time interval. The details of this
calculation are given in Appendix 1. All basins are
closed with no transport across the boundaries. Each
basin is rectangular in shape and is 1818 grid steps in
dimensions except where otherwise noted; since the
equations are linear the absolute value of the dimensions
has no bearing on the study. The pertinent facts for
each model are given in the figures. As explained above,
the friction term has been omitted to avoid any possible
concealment of computational instability through fric-
tional dissipation.

The first model tested was that of Fischer [3] described
in Appendix 5. The energy calculations are shown in
figure 2. The oscillations are due mainly to a phase
difference of (At)/2 between the transport and height
fields. The stability criterion without rotation was
found to be At<As/y/gDj2. 'The free period was approxi-
mately 26A¢ units. The general features of the height
and flow patterns were adequately reproduced in the model
without rotation. This could be determined by com-
parison with an analytic solution. In the model in-
volving rotation the insrtial period from the numerical
calculations was approximately 52At units or double
the free period without rotation. The model with
rotation was unstable as predicted in Fischer’s theory.

The second model tested was identical to the first except
that central time differences were used after the initial
time step. Several methods of starting the solution
were tested. The solution was not very sensitive to
the starting method. The starting method adopted
is described in Appendix 2. The stability criterion for
the central difference form is given as At<As/y/2 ¢D,
half of the value found in the previous case. The energy
curves are shown in figure 3. The improvement in
stability over Fischer’s model is clearly evident. It
was necessary to enlarge the scale in order to show
evidence of variation of energy with time.

The non-rotating model reproduced the analytic solu-
tion to a high order of accuracy. No analytic solution
in convenient form is known for the rotating model con-
sidered here. It was suspected that a resonance coupling
between the inertial frequency and the natural frequency
of the basin might be developed if the natural period
were near the inertial period. In order to test this hypoth-
esis the previous basin was adjusted to provide a natural
period a little greater than 45At¢ units. The resulting
energy curves are shown in figure 4. The first results
showed computational instability. The calculations were
repeated with two smaller values of At without obtaining
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Freure 2.—LEnergy computation for Fischer’s computational
model, central space differences, forward or backward time dif-
ferences, constant depth.

T T T T T T T T T T T
Centrol difference form — time ond spoce
At=AaS//3g0
W = 2f= Naturct frequency

@
<}
T
1

WITHOUT ROTATION

@
o
T

r— e ____ 7

WITH ROTATION

ENERGY (convenient units)
=
o
T
I

1 1 1 Il ! 1 ! 1 1 1 !
60 80 100 120 (40 160 180 200 220 240 260 280 300
TIME (at) = 45//2¢D

N
o

Fraure 3.—Energy computation for model using central diffcrences
in time and space, constant depth; natural period equals one-half
the inertial period for rotating model.
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Ficure 4.—Same as figure 3, except that the natural period equals
0.864 of the inertial period.

any substantial improvement. It appears from these tests
that the central difference formulation of the problem is
nearly stable if the frequency of the motion is very differ-

‘ent from the inertial period, but quickly becomes unstable

if the natural and inertial periods are similar. In the
general storm surge problem, however, one cannot be
sure that the natural period or the forcing period will not
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Figure 6.—Schematic illustration of the variable depth basin used
in testing computational stability.

approach the inertial period, therefore the search for a
more stable computational system was continued.

The third model tested was identical to the last in its
physical characteristics. However, the filter factor form
was used. Several subtle changes in the numerical anal-
ysis are required to obtain a consistent set of prediction
equations. In order not to interrupt the present flow of
thought on the computational stability problem, a de-
tailed discussion of these changes is deferred to Appendix
4. The important consideration here is the improvement
in computational instability obtained with the filter factor
form, as shown by the energy curve in figure 5. Again it
became necessary to expand the scale to show any varia-
tion of energy. This form appears to be sufficiently
stable, even when Coriolis terms are included.

In the fourth test, the constant depth was replaced by
the depth law

Dz, y)= (28)

] 1 | ] |
oo S o 60 80 206 220
T)ME 21=85/42gDmox )

0 240

Figure 7.—Encrgy calculation for variable depth model with stress
parallel to the depth contours, central time differences, filtered
factor space differences, no rotation.
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Figure 8.—Same as figure 7, but with rotation.

depicted in figure 6. No instabilities were observed with
or without rotation of the basin on a 36X364s grid.
The results are not shown.

The fifth test was identical with the preceding one,
except that the depth law was changed to

D(z, y)=—~ Lz y +L y+b.

This is equivalent to rotating the basin shown in figure 6

" by 90° so that the stress is parallel to the bottom contours.

The energy curves obtained from an 18X 18As grid
without rotation are shown in figure 7. The solid curve
was obtained with boundary conditions of the form of
equation (25). The dashed line was obtained with bound-
ary conditions of the form of equation (27). Here it is
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seen that the form of the boundary conditions can affect
the computational stability and that instability may take
the form of a gradual loss as well as a growth of energy.

The energy curves obtained with rotation are shown in
figure 8. The solid line was obtained with equation (25)
and the dashed line with (27). The flow patterns of the
variable depth models are more complex than those of
the constant depth models. Thus a better description of
the flow and an improvement in the computational sta-
bility can be obtained by using smaller values of Aax.
This is particularly true when the rotation of the earth is
considered.

9. THE PHYSICS OF THE DISSIPATION PROCESS

The least understood of the problems involved in the
construction of hydraulic models is the proper method of
dissipating energy. A physical analysis of the problem
indicates that the principal cause of dissipation over a
rigid bottom in shallow water is skin friction and that
this should depend on the bottom roughness and the
velocity vector near the bottom. The resulting stress is
proportional to the velocity gradient at the bottom and
is believed to be proportional to the square of the speed
at the upper limit of the boundary layer, and directed
oppositely to the bottom current vector. However, the
calculations discussed above provide values only for the
mean current averaged throughout the depth of the fluid.
In severe storms, the instantaneous motion at the bottom
may be dominated by wind waves and swell to a depth
of a hundred feet, and even the resultant motion, averaged
over many wave periods, may have any orientation
relative to the mean current motion. The direction, as
well as the magnitude, of the bottom stress vector is
frequently indeterminable from the other information
provided by the calculation.

The above considerations apply to both physical and
mathematical models. When only the transient periods
involving the build-up of a disturbance are considered,
the quantitative accuracy of published computations
appears to be independent of the assumptions made about
the bottom stress, and a wide range of assumptions has
been used. This suggests that equally good results might
be obtained for the transient case by neglecting the
dissipation term altogether. This procedure cannot be
used in studying the decay of an unusual disturbance or
in studying quasi-steady state solutions which require the
operation of the model for several prototype days or
weeks. In these cases some dissipative mechanism must
be included to obtain a reasonable balance of energy.
Any scheme which achieves a reasonable balance of
energy can be expected to provide a reasonable picture of
the main features of the flow, but only the scheme whichis
locally correct will give a good reproduction of small-scale
features.

The use of hydraulic models avoids the necessity of a
clear statement of the law governing the dissipation of
energy. This does not mean that it avoids the errors
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resulting from using an unsatisfactory law. If the model
is calibrated for calm weather conditions it can be expected
to underestimate the friction effects during storms. If
calibrated for storm conditions it can be expected to
overestimate friction during calm weather conditions.

10. THE COMPUTATION OF DISSIPATION TERMS

Although the proper expression for the physical dis-
sipation term has not been uniquely determined, it is safe
to say that its effect should be to decrease the total energy
of the flow. However, the straightforward introduction
of the dissipation term into central difference formulas
usually leads to computational instability, that is, to an
increase in the energy of the computed flow, This may
be avoided by evaluating the velocity at time ¢—A¢ when
computing the dissipation term in a model in which central
differences are used for all other terms, or an implicit
method may be used. A more detailed discussion of this
computational problem has been given by Miyakoda [16]
and Platzman [18].

11. SUMMARY AND FUTURE OUTLOOK

Tt has been shown that the computational stability
and hence the reliability of numerical solutions of the
hydrodynamic equations may depend on the particular
manner in which the terms and differential quotients of
the differential equations and the boundary conditions
are approximated by finite difference expressions. It has
been pointed out, but not explicitly demonstrated, that
the errors resulting from an unsatisfactory method of
approximations to the terms and differential quotients
generally take the form of false disturbances with hori-
zontal scales of only a few mesh lengths in both the velocity
and height fields. Small-scale disturbances in the grid
system can be eliminated or at least suppressed by the use
of appropriate filter functions. However, the filtering
operators will affect both the true small-scale disturbance
which is a part of the physical problem and the false small-
scale disturbance which results from the numerical process
in the same manner. Thus it is not possible to obtain a
true solution when the numerical process applied generates
disturbances of the same scale as the real disturbances.

This difficulty, which is of a mathematical nature, can
be avoided by using mesh lengths much smaller than the
scale of any important phenomenon to be investigated.
This result could be obtained in a straightforward manner
by using uniformly spaced computation points over the
entire basin, and magnetic tapes or other devices for
increasing the storage capacity of a computer. This is
rather expensive because the permissible value of At is
limited proportionally to Aa;/\/ gD. Space detail is
generally needed only in shallow water, but the existence
of deep water constrains one to compute excessive time
detail as well. The same result can be obtained by using
asmaller mesh length in regions where small-scale phienom-
ena are important, and a greater mesh length in other
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regions. Experiments now being conducted by the:
authors and their associates indicate that this process will’
produce satisfactory results but that this problem is no|
more simple than the construction of an optimum finite'
difference form.

Although no data on the solution of practical problems
are contained in this paper, references have been made to
several studies by Hansen, Platzman, Welander, and
others in which excellent agreement was obtained between
numerical solutions of the equations and the large-scale
features of geophysical phenomena. In most cases the
computations also show small-scale phenomena of greater
intensity than that observed in nature, and not very well
correlated with the observed small-scale phenomena.

The problem of energy dissipation is of a more funda-
mental nature. One other problem of a similar nature is
also important. This is the specification of the wind stress
field. In both of these cases the difficulty is due to the
lack of a satisfactory physical model relating the transfer
of momentum by turbulence to the time-averaged flow of
a fluid. In the first approximation the difficulty amounts
to an imprecise knowledge of a momentum transfer coeffi-
cient such as the drag coefficient for wind over water, or
water over the bottom of the basin. In both cases some
improvement in the numerical solution can be obtained
by calibrating it to past observations by experimenting
with the transfer coefficients, in much the same way as
one calibrates a hydraulic model by varying the roughness
parameter. The process is not very satisfying from a
scientific point of view, but it can be used to obtain useful
results. _

The authors must decry a prevailing tendency in this
field to try to match a poorly understood dissipation
mechanism to a poorly understood computational insta-
bility problem in the hope that the two errors will cancel
each other.

The nature of the computational difficulties is well
enough understood to enable one to obtain considerable
insight into the nature of many problems even though
quantitatively exact answers may not be available. For
example, numerical computations may be used to deter-
mine the relative severity of the surge expected to accom=
pany an arbitrary storm approaching the coast from
several directions. This concept has been used as the
basis of a successful system for predicting the seiches occa-
sionally produced in Chicago by squall lines. Numerical
calculations by present methods can be expected to reveal
the response of a harbor as a whole to any large-scale dis-
turbance outside the harbor, but the hydrodynamic cal-
culations discussed here cannot yet be depended on to
reveal information on the effects of breakwaters or wave
run-up, or intersecting wave trains. Other types of cal-
such as wave refraction diagrams based on
geometrical optics, may be useful in solving such problems.

culations,

APPENDIX 1.—ENERGY CALCULATIONS

The energy invariant for equations (4), (5), (6) without
the friction and forcing terms is

=2 [ (475" )aa

where A is the surface area of the basin. Since the trans-
ports and height values are known only at discrete points
of a grid system, the energy equation can be solved only
by recourse to a numerical quadrature. Throughout this
paper, the three fields are calculated at each and every
grid point, ineluding the boundaries, for each time interval.

Consider a rectangular (LW) grid whose points on L
run from 0 to L, and on W run from 0 to W. By noting
that the boundary conditions oblige the transports normal
to the boundaries and at the corners to be zero, energy for
the rectangular basin at a given time can be approximated
by the trapezoidal rule to

L—-1W-—
E*= p(As)Z ;1 Z=:r g(hi,1)2+{(U1,1>2+<V1‘.j> }/Di.]]
+1% mmwmmHMMMHmmmm

{(UL D+ Ve Do+ 5 Z gl (i 0)?
+ R w)? 3 { Uso)®+ V00 Dy ot-{ Usw)®

+ (Vo) YD1+ 5 1 ho o)+ (ho )+ (. o)+ (hs,)?)

where ki ;=h(iAs,jAs, 1),  w,;=u(ids, jAs, 1),
v(34s, jAs, ).  The quantity I£* is the energy term calcu-
lated here in machine computations for convenience.

APPENDIX 2.—STARTING PROCEDURE

vi.j:

If central differences are used and calculations are for
each grid point at each time period, it is necessary to
know the field values of U, V, and h at time ¢ and t—1
in order to calculate the values at time t4+1. Thus some
alternative procedure must be used for calculations at
time t=1. This requirement is avoided when only
forward differences are used in time, or when the stag-
gered grid system is employed; however, there are other
disadvantages to these systems. Since all grid points
are used at each time step in this study, special starting
procedures are required utilizing a forward difference
scheme for the first time interval.

Since the field values are zero initially and the forcing
function is small at the first time interval, the momentum
equations of motion are approximated at interior points to,

~fV+®r

9Z~_fU+(u)
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Applying a forward difference to the time derivatives
above and taking the arithmetic mean in time for the
richt-hand side of the equations give,

UL =5 (97 1V )

At
Vi, ]’N_ [V, —fUL

When the principal part of each transport term is chosen
for the Coriolis cross term, the above is further approxi-

mated to
At At
Li~S I:u) ", fT (u).r}']]
At fAt
Vi~ 5 W 5 "5;]

The starting values for the transport terms are now
substituted in the equation of continuity, with similar
reasoning as above, to give height values at the interior
points as

At

hh“m[ R

U%—l,j+V%,j+l—V},j—l]
Note that A}, is zero everywhere in the interior for the
type force used in this study except for points on the
first mesh lines bordering the boundaries.

A starting procedure for the boundaries can now be
formulated. Consider the west wall where the U trans-
port is zero for all time. In this case the V transport is,

Al

VO N_Q__ [€2] TO

For the force considered in this paper, V;; is zero.
Similar considerations hold for the other boundaries. The
boundary conditions of equation (25) utilizing a forward
differencing in space give
B s=h =g (VA7)
s
Similar forms are developed for the other boundaries.

For the corner points, a method is given in Appendix 3.

Tests made with several different types of starting
procedures gave results which appear to show that the
numerical solution for a rectangular basin, initially
quiescent, is not sensitive to the starting procedure used
for the type force considered in this study.

For some numerical runs with different starting pro-
cedures, the height values of the boundary points after
each interval of machine calculations were stored on
magnetic tape for future use. The same problem was
then rerun with the stored height values as boundary
conditions to see if zero normal transport could be recap-
tured on the boundaries. For these tests, the starting
procedure was superior to others tried and did recapture
zero normal transports at the boundaries except for
minor errors on the corner points.
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APPENDIX 3.—CORNER POINTS

The corner points of a rectangular grid have zero

transports; therefore o0U/0t, 0V/Ot are also zero. This
suggests using both momentum equations weighted
equally to determine height values at the corners. Con-

sider the SW corner at point (0,0). The two momentum
equations give
Oh @1, oh Wr

o gD’ 2y gD

Expanding the above derivatives as in (13), adding and
arranging gives,

2As

00—[4<h01+b =M= Mo (et o >]/6

For starting values, a simple forward difference of the
two momentum equations gives

hs_o=[ha_l+h},o— b (0 Ta,o+<u>ra.o>]/2

The momentum equations can also be combined to give
a slightly different compact form.*

fl—1 0 —1
m o mo___ 4A8 () m [€7)] m
heto= 4 4 O|Alty 7Dus [ 780+ P 78] /9
vl 0 4 —1

Application of (27) to the two momentum equations
gives, for variable depths,

—1 0 —1
4 4 0|(Dh)7, _4AS [@ 74 77 ]
0 4 —1
hio= S R—
4 4 0| D,
0 4 —1

Similar results hold for the other three corner points.
Notice that the height values at the corner points are
determined last, after field values are determined at the
interior and boundary points.

APPENDIX 4.—SMOOTHING THE CENTRAL
DIFFERENCE FORM

The growth of energy in the runs of the central difference
form may be attributed to the interaction of high fre-
quency components for which the grid system is incapable
of discriminating correctly. The smallest wavelength for
which the grid system is capable of discriminating is
2As; this wavelength is the one most likely to arise from
truncation error and therefore the one most likely to

*The form can he derived from a Taylor expansion in two dimensions or applications
of (13).
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degrade the solution with time. By use of a smoothing
routine, wavelength components of 2As may be suppressed
from the field at given times (Shuman [22]). An elemen-
tary smoothing function in one-dimension acting on a
field # at discrete interior points (7,7) of a grid system can
be,
Fzyj—’—[Ff 11+2F1j+F1+1] ]1 2 llFi,j

In two dimensions, one could smooth first in one

direction and then smooth the smoothed value in the other
to obtain,

~

Fz’,j—i—l 1 2 1
z 1|~ 1
= P _—_— 2 .
2|2 =16 4 2| Fy,
Fi,j—l 1 2 1

It is irrelevant in which direction smoothing is first ap-
plied. The 9-point form can be applied to the field values
of interior points while the 3-point form can be applied to
the boundaries. No known symmetric smoothing form
can be applied to the corner points.

It is possible to keep the program loops which compute
the field quantities for time ¢-+4-1 distinet from the smooth-
ing loops, and in fact this procedure is frequently followed.
Some advantages can be gained by combining the two
processes. If the 9-point smoothing form is applied to the
derivatives of the central difference form, say, in the -
direction, there follows,

OF 1 z 4
5z - 1—2_8 [—Fiy 4t Fip]
1 —1 —2 0 2 1 ‘
2A !
Sy 9 0 2 1
If the following approximation is considered,

! —1 0 0 0 1 1 —1 0 1
S v 0 O 0 Fi 9 2 0 2 F.tlj
‘ 16A '
B8] 0 0 0 0 1 [
then the derivative can be rewritten as,*

—1 0 1
e -1 0 1
and
1 2 1
gﬁj :§1A_S 0 0 O Fi, 7
Y /r=r; ; 1 —9 1

These express1ons are of the same form as equation (15).
This derivation e\pliuns the name “filter factor form”
(Shuman [23]) and the choice of the constants @ and b.
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This derivation also shows that all finite difference
operators have some characteristics of smoothing opera-
tors. It appears that terms which are not differenced
should be smoothed by a similar smoothing function.
Experiments not discussed in this report indicate that
this procedure improves the stability of the calculations.
The filter factor forms of the equations of motion, as
used in this study, are given below. Note that the
Coriolis terms are smoothed.

If the area 9-point smoothing form and the above
altered derivative forms are applied to the field values at
time m in the equations of motion for the central difference
form, the following results:

—1 0 1
U?’H-l__U”l—l At m
1,7 —Ui4 —gDi,jE‘;‘ —2 0 20h7;
—1 0 1
1 2 1
+fASt 24 Vi2ai® e,
1 2 1
1 2 1
m+1 m-1 At m
Viit=VE; —gDi,jZAE 0 0 0/A?,
N |
1 2 1
j%t 2 4 2\Up 424t D77,
1 2 1
—1 0 1
At
m+1 m-1__ 8t _ -
mp=hpy—o= 4 -2 02U,
—1 0 1
1 2 1
+{ 0 0 o|vVe,
—1 —2 —1

Note that in boundary computations using the one-
dimensional smoothing operator, the Coriolis cross term
is absent and the derivative remains unchanged from
a similar approximation as in the two-dimensional form.
The central difference form thus can be applied directly
to the boundaries without any alterations.

Some further characteristics of the filter factor form of
the equations can be illustrated by considering the free

*If F(z, v) is cxpanded in a Taylor series up to and including the 2d derivatives about
eight neighboring points, one can form,

oF T
% sotamas| 0 0 b Fui
—a 0 a

where a and b are parameters at disposal. In the central difference form a is taken as

zero. In this study, ¢ is1and bis 2.
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oscillations of a constant depth basin in the absence of
the Coriolis and force terms. Let the solution for the
transport and height fields have formal solutions of
individual terms,

O, V,0)'=U,V,h)\"

where (U,V,h)%cc ¥ ~185@t+0) and g=2r/L, b=2r/W are spa-

tial wave numbers.
(U, V, k) Ds=)3 (U, V7, ) =
U,V byt =\, V ) n-Dar

The formal solution permits,

The filter factor form may now be written as,

[’)\2—1 0 V—Tlav'A Um-t
0 MN—1  J—lwA||Vm1|=0
L\CTBA N=18N N—1 fm=t

gDAL, o At

4As " 4As
v’’’ =4 sin bAs(1--cos aAs)

where, a= v'=4 sin gAs(1-+cos bAs), and

Suppose now that L or W has wavelength 2As. The
terms »’, and »”/ in the matrix disappear so that wave-
lengths of 2As are deleted from the computations.*

In order for the matrix form to hold,

N=D[(N—=1)*+aB("*+v" H)N]=0
72 112
YLI)) [‘fﬁ(”;—_”_)_l] A2+1=0
For stability, it is required (Richtmyer [20]) that [M?<1.
For this to hold, the above equation gives,

aB('24""2)
4 <l

or

Noting that the max of »” and »"/ is 8, then substitution
in the above equation gives a stability criterion of,

As
At<l——
\)ZQD
This criterion is identical to that of the central difference
form.

APPENDIX 5.—FISCHER'S FORM

The finite difference form given by Fischer [3] uses
forward differences in time and central differences in
space. It is a combination of explicit and implicit
methods. For interior points, neglecting bottom stress
and incorporating the pressure force term with + the
surface stress term, the form is,

*In the central difference form, wavelengths of 2As do not conveniently drop out since
» and '/ do not have the multiplication term, (1+cosj As).
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Upit= 1"'.‘1_%2—2 D, W =R )AL Ve @7
ViR =V =22 D b=k )~ AU~ 9 7]
By =R o (U3 — U, -V, — VgL,
2A8

where the notation follows that of equations (1)—(3).
It can be shown that for constant depth, no Coriolis, and
free oscillations, a stability criterion for the simple wave
equation is,

2
At<\/g—D As

Fischer’s form is appealing since field values for time
(m—1)At are not required in the calculations, the stability
criterion is twice that of the central difference form, and
starting values are not needed. For the case of rotation
with constant depths and a periodic boundary condition
that permits a solution in a Fourier expansion, the form is
unstable unless the bottom stress term in the difference
form is retained as a frictional dissipation term. The
friction term as given by Fischer is, @r_,=rU; W7_,=1V,
where » is a coefficient generally given as a function
that varies inversely as some power of the depth. For
this case, Fischer shows that the difference form is stable
provided that

At<rlf?, f#0
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